Clathrin-Mediated Endocytosis Is Impaired in Type A–B Niemann–Pick Disease Model Cells and Can Be Restored by ICAM-1-Mediated Enzyme Replacement

نویسندگان

  • Jeff Rappaport
  • Carmen Garnacho
  • Silvia Muro
چکیده

Drugs often use endocytosis to achieve intracellular delivery, either by passive uptake from the extracellular fluid or by active targeting of cell surface features such as endocytic receptors. An example is enzyme replacement therapy, a clinically practiced treatment for several lysosomal storage diseases where glycosylated recombinant enzymes naturally target the mannose-6-phosphate receptor and are internalized by clathrin mediated endocytosis (CME). However, lysosomal substrate accumulation, a hallmark of these diseases, has been indirectly linked to aberrant endocytic activity. These effects are poorly understood, creating an obstacle to therapeutic efficiency. Here we explored endocytic activity in fibroblasts from patients with type A Niemann-Pick disease, a lysosomal storage disease characterized by acid sphingomyelinase (ASM) deficiency. The uptake of fluid phase markers and clathrin-associated ligands, formation of endocytic structures, and recruitment of intracellular clathrin to ligand binding sites were all altered, demonstrating aberrant CME in these cells. Model polymer nanocarriers targeted to intercellular adhesion molecule-1 (ICAM-1), which are internalized by a clathrin-independent route, enhanced the intracellular delivery of recombinant ASM more than 10-fold compared to free enzyme. This strategy reduced substrate accumulation and restored clathrin endocytic activity to wild-type levels. There appears to be a relationship between lysosomal storage and diminished CME, and bypassing this pathway by targeting ICAM-1 may enhance future therapies for lysosomal storage diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ICAM-1 targeting, intracellular trafficking, and functional activity of polymer nanocarriers coated with a fibrinogen-derived peptide for lysosomal enzyme replacement.

Enzyme replacement is a viable treatment for diseases caused by genetic deficiency of lysosomal enzymes. However, suboptimal access of enzymes to target sites limits this strategy. Polymer nanocarriers (NCs) coated with antibody against intercellular adhesion molecule 1 (ICAM-1), a protein overexpressed on most cells under disease states, enhanced biodistribution and lysosomal delivery of these...

متن کامل

A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders.

Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatme...

متن کامل

The clathrin adaptor proteins ARH, Dab2, and numb play distinct roles in Niemann-Pick C1-Like 1 versus low density lipoprotein receptor-mediated cholesterol uptake.

The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) thr...

متن کامل

Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.

Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to ...

متن کامل

Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK

The drug 2-hydroxypropyl-β-cyclodextrin (HPβCD) reduces lysosomal cholesterol accumulation in Niemann-Pick disease, type C (NPC) and has been advanced to human clinical trials. However, its mechanism of action for reducing cholesterol accumulation in NPC cells is uncertain and its molecular target is unknown. We found that methyl-β-cyclodextrin (MβCD), a potent analog of HPβCD, restored impaire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014